

© Copyright Strategy Dynamics Ltd, 2018. All rights reserved. This document may be freely shared, but not altered.

System Dynamics: a Core Systems
Engineering Capability

Kim Warren

Systems Engineering (SE) is moving from a document-based discipline to model-based systems engineering

(MBSE). SE is also reaching out from its historic focus on physical systems to tackle wider issues in enterprise

planning and management. Time-based simulation with System Dynamics (SD) is an ideal support for both these

trends and is therefore a skill that every systems engineer should possess. After a brief explanation of each field, a

simple ‘Living Business Model’ shows how SD models work and their benefits. We then outline the wider scope of

applications for SD modeling and suggest first steps to start acquiring SD skills.

(This paper is also available in three parts on LinkedIn at sdl.re/LIPSESD1, sdl.re/LIPSESD2 and sdl.re/LIPSESD3).

What is Systems Engineering (SE)? … for non-systems-engineers1

The SE professional body, INCOSE (incose.org) defines "a system" as ... a construct of different elements that

together produce results not obtainable by the elements alone. Those elements can include people, hardware,

software, facilities, policies, documents; everything required to produce system-level behavior and performance.

“Systems Engineering”, then, is ... an engineering discipline [for] creating and executing an interdisciplinary

process to ensure that customer and other stakeholder's needs are satisfied in a high quality, trustworthy, cost

efficient and schedule compliant manner throughout a system's entire life cycle – a definition that reflects SE’s

historic focus on physical and technical systems and projects. SE has in recent decades extended its scope and is

deployed for a wide range of organisational issues, and even for social, economic and environmental challenges.

SE can also help 'engineer' and manage the continuing operations of enterprises, both the whole enterprise, and

key functions or activities.

A system life-cycle may be viewed as two main phases: (1)

acquisition in which the system is conceived, developed

and created, and (2) utilization – where the system is

operated to fulfil its purpose and produce desired

outcomes (Figure 1). Later “transformation cycles” may re-

conceive and modify (re-engineer) the system, often to

fulfil extended purposes.

These phases are clearly evident in the life-cycle of an

enterprise, and also apply to initiatives that an enterprise

may undertake. The Acquisition/Utilization split may shift,

however, depending on the level at which the system is

considered. Opening a retail store, for example, involves acquisition, as it is planned and built, and utilization as

the now-opened store is operated for many years. However, the growth and management of a whole chain of

stores is a continuing operation, within which the many store-openings are merely a stream of events.

Finally, retirement ceases the system’s operation when no longer viable or needed and disposing of its parts. But

retirement rarely features in enterprise management – few executives or investors plan for going out of business,

or for ‘retiring’ change-initiatives that they undertake.

1 I am grateful to George Sousa for his guidance on the essence of systems engineering.

Figure 1: A system’s Acquisition and Utilization

http://sdl.re/LIPSESD1
http://sdl.re/LIPSESD2
http://sdl.re/LIPSESD3
https://www.incose.org/AboutSE/WhatIsSE
http://www.incose.org/
https://www.linkedin.com/in/georgesousa/

Warren: System Dynamics - a Core Systems Engineering Capability

- 2 -

Model-based Systems Engineering (MBSE) The SE body-of-knowledge or SEBoK (sebokwiki.org) explains that SE is

moving from documentation-led approaches, which “suffer a lack of precision, inconsistencies between elements,

and difficulties in maintaining and reusing the information”, to a more model-based discipline (SEBoK p.39). MBSE

is “the formalized application of modeling to support system requirements, design, analysis, verification, and

validation activities beginning in the conceptual design phase and continuing through development and later life

cycle phases”.

So far, it seems, MBSE is still applied only in pockets within organizations and unevenly across industry sectors.

Further evolution of the modeling tools is called for, plus a workforce skilled applying MBSE. Software tools

employing The Systems Modeling Language (SysML) enable SEs to formalise many types of model, mostly as

linked-block diagrams. But such models are beyond the scope of this article, which focuses on quantified

simulation models that generate time-based analysis, and projections of system-wide behaviour.

What is System Dynamics (SD)?

The International System Dynamics Society (systemdynamics.org) defines SD as "... a computer-aided approach to

policy analysis and design. It applies to dynamic [time-based] problems in complex social, managerial, economic,

or ecological systems." So SD simulates how any physical, social, economic, and/or environmental system

behaves over time, or indeed a system featuring elements from all these domains. Here we focus on modeling

enterprises (a commercial business, public service or non-profit organisation) or any initiative it undertakes.

SD is one of three related dynamic modeling methods. Discrete-event simulation (DES) is very widely used to

model how entities move through a process, such as queuing cases, production systems or supply-chains. Agent-

based modelling (ABM) simulates the actions and interactions of autonomous agents, to assess their effects on a

wider system. It is especially powerful with geo-spatial phenomena such as the spread of a disease. SD, in

contrast, is a continuous simulation method that captures interactions between populations of things, people,

cash or materials, including intangible factors, such as states-of-mind, information and certain quality measures.

(See more on these methods in Maidstone, 2012). These features of SD modeling lead to two key benefits.

• First, the focus on aggregate populations makes SD models compact and quick to build. But this has a

cost – SD models say nothing about individual entities. So, for example, service quality may be OK on

average, but lousy for a specific customer. SD can model sub-groups, but this is still not the entity-level

detail of DES or ABM. It can be useful to combine these tools in hybrid models (Mustafee et al, 2015).

• Secondly, SD’s capture of all physical and non-physical entities in a consistent and rigorous manner

enables models to simulate all aspects of a project, initiative or enterprise – physical, human, financial.

A sound SD model not only matches a system’s observed or likely performance – many techniques can fit trends

and create forecasts – but should also match everything driving those outcomes. Like a good working model in

any field, then, it mimics all the behaviour of the thing it portrays, albeit at an aggregate level. In the extreme, an

SD model can be a high-level “digital twin” of the enterprise or issue, which can be used to help manage that

system by continual updating with latest real-world information.

This aim may seem over-reaching – surely we cannot capture and simulate the complexities of how a whole

enterprise functions? However, a logical, step-wise approach does make the aim achievable, and is not even

especially difficult. The resulting Living Business Models capture, intuitively and quantitatively, mechanisms that

spreadsheet-based efforts at business modeling cannot handle: long-term accumulation processes (e.g. winning

and losing customers or staff), including intangible factors (e.g. data, staff motivation, reliability),

interdependencies between those accumulating factors, which often include delays, thresholds that trigger

https://www.sebokwiki.org/
http://www.systemdynamics.org/

Warren: System Dynamics - a Core Systems Engineering Capability

- 3 -

discontinuous change. Critically, the interdependencies create feedback mechanisms that can accelerate or stifle

growth or decline, or cause boom-and-bust episodes or cyclicality.

Dynamic modeling is different from process modeling!

Many SEs are very familiar with process modeling or mapping, but are less aware of dynamic modeling, so it is

important to understand the fundamental difference between the two. SD, DES and ABM all share the feature

that they represent the "things and materials” that exist and interact, and that are created, leave or move

through a system. Elements in a dynamic model are therefore exclusively nouns, such as people, customers,

products, units, cash, data and so on. These methods also quantify those things and materials in the system and

simulate how those quantities change over time.

This is quite different from process modelling approaches that map, qualitatively, the connected processes that

act on those things and materials. Process model elements are therefore mostly verbs – hire people, develop

products, receive cash, and so on. (See Appendix 1 or sdl.re/LIPprocessVdynamicModeling for more)

Elements of an SD model are:

… "accumulating stocks" or just Stocks – quantities of things or materials that exist and that define

the state and rate-of-change of a system at each point in time, such as inventory, cash, staff,

customers, machines. These are fundamental to how the real world works. (See “What is an Asset-

Stock and Why Should You Care?” at sdl.re/LIPstock.)

… the "flow-rates" or simply Flows that cause Stocks to grow or decline, such as orders/day, cash-

flow $/week, people/month;

… all other items – including constant parameters such as hours per working week, ratios like

demand-supply balance, variables such as service quality, and performance results.

An SD model also includes the causal relationships between any items that depend on each other. Most are

simply arithmetical; for example, sales/month = customers * sales/month-per-customer; or work capacity (person-

hours/day) = staff * hours/day-per-person. Other causal relationships are less readily formulated but can be

“looked up”; for example, how staff turnover changes with rising work pressure, or how sales/month-per-

customer change with changing prices. This allows models to capture important threshold effects - for example,

sales per customer may be near-zero at any too-high price but escalate sharply as price falls to an acceptable

threshold; or staff turnover may rise sharply when work pressure reaches a threshold that staff will tolerate.

Building SD models Reliable SD models are most easily built by a rigorous abductive process (Figure 2), explained

at sdl.re/LIPagileSD and the paper at sdl.re/agileSD. This process starts from performance outcomes, and works

back along chains of causality, validating each causal relationship in turn. This process quickly reveals that …

• performance outcomes depend on one or more stocks – sales depend on the customers-stock; service

capacity depends on the service-staff-stock, for example

• changes to all such stocks are driven exclusively by the flow-rates of quantities that are added to, or lost

from those stocks – the number of customers or staff today, for example, is precisely by the number last

month, plus and minus any customers or staff won or lost during the month

• those flow-rates depend on current stocks – the flow of customers won/month depends on the stock of

sales people, and staff turnover depends on the workload driven by the stock of customers. This is the

mechanism that explains the interdependencies in the system.

• one or more flow-rates depend on the current quantity of its own stock – customers won/month depends

on the current stock of customers through a word-of-mouth process, and staff turnover depends on the

http://sdl.re/LIPprocessVdynamicModeling
http://sdl.re/LIPstock
https://en.wikipedia.org/wiki/Abductive_reasoning
http://sdl.re/LIPagileSD
http://sdl.re/agileSD

Warren: System Dynamics - a Core Systems Engineering Capability

- 4 -

work pressure that reflects the current stock of staff. This is the mechanism that causes models to

capture real-world feedback processes.

Figure 2: The agile process for developing SD models

There are two other common approaches to building SD models. First, we can start from well-established generic

models that have been proven to match whole classes of system. Many similar systems share common structures,

often with common implications for design and management of those systems. Consultants who focus on a

specific application domain are highly skilled in wielding such generic models, adapting them to any specific case.

Generic templates exist for many small issues – for example, how service quality reflects service demand and

service staff capacity; how marketing and sales effort moves customers through stages of awareness and loyalty;

how maintenance affects the deterioration of physical assets and the resulting system reliability. There are also

much larger templates – common structures have been found for whole classes of business-types (retailing,

professional-service firms, media businesses, and so on), and generic models exist for different kinds of

environmental challenges, large-scale projects, social-welfare issues, and so on.

Another style of model-building starts by developing qualitative causal diagrams. Widespread consultation

captures how stakeholders believe the interdependencies in a system to work. This results in what is known as a

shared mental model in the form of a causal-loop diagram (CLD) of relationships and feedback loops throughout

the system. From this qualitative map, modelers identify the accumulating stocks, seek data, then construct and

validate a working quantitative model. A good explanation of this approach can be found in Vennix, 1996, and for

more technical guidance on building working models, see Sterman, 2000.

Many practitioners go no further than to seek insights from the qualitative CLD in what is known as ‘feedback

systems thinking’. There is a widespread belief that such qualitative feedback diagrams are SD, but the focus in

this paper is on the potential contribution of quantified SD simulation models.

A simple SD project example

How SD models function is best explained with a worked example. A team of staff is working to complete a

project over 20 weeks. The project consists of a set of tasks, each requiring some person-weeks of effort to

complete. Staff may leave but can be replaced by others who are hired and trained.

Figure 3 shows a small model-section in which the number of staff on the project are lost and replaced over 20

weeks. Those staff drive both work capacity and cost. The figure compares a policy that reacts late to staff losses,

and then only replaces those currently leaving (blue) with a policy that reacts earlier and replaces staff previously

lost (green). Try this model for yourself at sdl.re/SEstaff.

http://sdl.re/SEstaff
http://sdl.re/SEstaff

Warren: System Dynamics - a Core Systems Engineering Capability

- 5 -

Figure 3: How a Stock of staff changes over time

These models are not complicated! – Think of this image as a set

of linked charts on top of a spreadsheet. Each item is a

spreadsheet column with its name in the top cell and values for

each week in the cells below. The arrows are like cell-references,

showing what is calculated from what – so you can’t make cell-

reference errors! The box for Staff and the thick arrows for staff

added and lost simply highlight the unique mathematical

relationship between a Stock and its Flows. Each item holds the

formula for calculating its values from those it depends on – and

that formula is in natural language, not Excel-code!

In figure 4, only trained staff are working through the Stock of tasks needed to complete the project. In the blue

scenario, lost staff are replaced if there are fewer than 25 people in total. But new hires need 3 weeks’ training,

so we have too few staff and the tasks are not done fast enough to complete the project in 20 weeks. In the green

scenario, we react earlier to the staff shortage, hire staff faster, and continue hiring up to a larger total number.

This is just enough to complete the project within 20 weeks, although of course at a higher cost. Explore the

model at sdl.re/SEproject, trying to complete the model on time at minimum cost.

Figure 4: How changing staff numbers drive completion of a project.

Testing process improvements Appendix 1, comparing process-v-dynamic modeling, explains that key processes

are often located at the flow-rates in SD models and determine how fast those flows run. Key processes here

(each made up of more detailed activities we do not show) are hiring trainees, training them, and completing

project tasks.

http://sdl.re/SEproject
http://sdl.re/SEproject

Warren: System Dynamics - a Core Systems Engineering Capability

- 6 -

We can use the model to test the benefit of making process improvements. Figure 5 shows the result with

training time cut to 2 weeks and person-hours per task cut from 500 to 400. The project completes by week 20,

even if staff numbers decline and are not re-built. You will also see in the model that the shorter training time

delays the need to hire by 1 week and reduces costs by cutting

the number of unproductive trainees.

This project-completion demo is of course very simplified – SD

models can add the many complexities needed to model real

projects, and indeed SD has long been used for exactly this

purpose (Lyneis and Ford, 2007). See also information at

systemdynamics.org/fluor on how Fluor Corporation has used

dynamic project models.

SD modeling of physical systems

Although project management SD models are mostly built around stocks of work-to-do, rather than on the

physical entities to which that work is done, models may also simulate changes to quantities of relevant physical

elements – units produced, tons of material consumed and so on. Late delivery of raw materials, for example,

may delay work completion, even if adequate staff are available, and consumption of materials drives costs.

The product development domain features a similar focus on work-to-be-done. SD models of product

development track the completion of features needed for a product to be deemed adequate by customers. Such

models may go on to assess how the addition of further features drive growth in adoption and purchase by those

customers. Setting this alongside a similar structure for rivals’ product development dynamics enables more

powerful models of competition to be built than can be achieved by considering prices and marketing alone.

Since SD’s foundations arise from principles of engineering control theory (Forrester, 1968), it has from the start

been applied to a wide variety of physical-system challenges. Supply chains are of course made up of

interconnected stocks of items and materials, between which goods and materials flow. SD models capture the

high-level dynamics of supply chains – how aggregate quantities rather than individual entities move and change

over time – but can add links to non-physical factors, such as workloads and the financial value of those materials.

Figure 6 shows a business holding inventory in order to meet customer-orders and replenishing that inventory

with orders placed on a supplier and received after a delivery delay. The figure shows how a certain policy for

setting orders to the supplier changes the actual order-rate and inventory when customer orders increase.

Figure 6: Changing orders and inventory levels in a simple supply chain

Figure 5: Project completion with improved
processes for training and task completion

https://www.systemdynamics.org/fluor

Warren: System Dynamics - a Core Systems Engineering Capability

- 7 -

The model (at sdl.re/SEsupplychain) demonstrates the complexities involved in designing an ordering policy that

best-meets changing customer orders while minimising the costs incurred by holding inventory (Sterman, 2000:

chapter 17). Models can also account for often-powerful intangible factors and their impact on policy for

managing supply chains. Fear of stock-outs, for example, may cause over-ordering, with potentially damaging and

costly implications for inventory levels and flows.

Asset management is another domain in which SD models of physical factors have been applied. Such models can

track populations of different types of equipment through a typical life-cycle – after bedding-in, units have a long

reliable life, before degenerating and becoming quite unreliable. The commitment of staffing and expenditure to

the maintenance, refurbishment and replacement of assets is a complex challenge that must balance system-

performance aims, notably reliability, against the considerable costs of sustaining the network of physical assets.

(See a demonstration model of such a challenge at sdl.re/assetpipeline).

Physical factors feature in many SD models of environmental challenges, such as the management of water

resources, natural resources (crops, fish, livestock …), and climate-change impacts (Ford, 2011). Again, the special

contribution of such models is the ability to capture interactions between physical and non-physical factors in a

faithful simulation of an entire situation or episode. Take the case of a large-scale engineering solution to

rejuvenate water quality and wild-life in a moribund lake, explained at sdl.re/LakeModel2. The project required

integrated modeling of the hydraulics and water quality,

power-generation, the physical engineering, and the

financial business case. Achieving this integrated

simulation depended on capturing the knowledge of

experts from several disciplines in a shared mental

model, enabling all parties to see the relationships

between their own part of the system and the whole.

The resulting model enabled all parties to see, clearly and

immediately, the impact of alternative assumptions and

options for the project.

Modeling a new business initiative

Turning attention back to models for business cases, the model at sdl.re/SEnewservice extends the scope of the

small project model in Figure 4 by making it the first phase of a larger initiative:

• The wider initiative concerns developing a new service that a business believes can be sold to clients

(mostly customers for existing products, not included in the model).

• Once the new service is completed, project staff are redeployed onto other tasks, but at the same time

sales people are deployed to capture clients for that new service.

• Clients require support from service staff and leave if service quality is poor.

• Clients pay us fees for the service, generating rising revenue.

• However, the business incurs project-staff costs during many weeks before the service can be sold, and

also incurs sales-effort costs before revenue starts to rise.

• The net difference between the revenue generated and costs incurred is the net cash flow of the

initiative. Cumulative costs drive a heavy total investment in the initiative before rising revenue starts to

repay that investment.

2 This case is courtesy of Copernicos Groep.

http://sdl.re/SEsupplychain
http://sdl.re/assetpipeline
http://sdl.re/LakeModel
http://sdl.re/SEnewservice
http://copernicos.com/en/

Warren: System Dynamics - a Core Systems Engineering Capability

- 8 -

A screen-shot of the full model (at sdl.re/SEnewservice) is in Figure 7. This model is, in effect, the ‘design’ of the

new initiative, and includes many assumptions about how it is expected to work (the highlighted parameters) –

how much work is needed for each staff activity, how much people cost and how much revenue clients generate.

More subtle mechanisms include the inefficiencies that arise from deploying too many staff on the development

project, the increasing effort needed to win later clients, and the impact of service quality on client losses.

This is an example of a complete model of a strategic issue for the enterprise, and includes most of the key

features of SD noted earlier:

• The focus is on how the system performs, quantitatively, over time.

• The stocks (staff and clients), all of which are changed by flow-rates, drive all performance outcomes

• … and the training pipelines introduce delays.

• All causal relationships are captured with simple arithmetic – except for the discontinuous, threshold

relationship between service adequacy on client losses, which is ‘looked up’

• All flow-rates are driven by one or more stocks (plus our decisions), which capture interdependence

between system elements

• … and feedback arises because some flow-rates depend on the level of their own stocks (for example, the

client loss-rate depends on the balance between the current number of clients itself and the number of

service-staff).

Multiple uses for Living Business Models

SD models may be deployed at multiple levels in an organisation, and for diverse purposes (Figure 8). Most SD

applications in business cases have concerned understanding and addressing specific issues, whether small-scale

and quick, such as fixing a service quality problem, or larger-scale such as acquiring and merging with another

company. However, it is increasingly apparent that models can be used for on-going planning and management

of continuing operations. The model in Figure 7, for example, could be routinely updated with actual progress on

the new-service initiative and so be of continuing value for managing that initiative. Such continuing use may, of

course, lead to the model being modified as more is learned about how the real world system is working.

Figure 8: Examples of the multiple purposes and levels for using SD models

(There is a still-lower level at which SD models can be used – for shorter-timescale operational processes, such

as the hiring example in Appendix 1.)

http://sdl.re/SEnewservice

Warren: System Dynamics - a Core Systems Engineering Capability

- 9 -

Figure 7: A model on developing, selling and supporting a new client-service

Warren: System Dynamics - a Core Systems Engineering Capability

- 10 -

The following demonstration models illustrate the variety of purposes for which SD-based Living Business Models

can be deployed:

• The start-up model for a neighbourhood restaurant, at sdl.re/BMrestaurant4e is a complete enterprise,

albeit a simple one. This model demonstrates the standard classes of Stocks or “resources” found in most

business cases; customers, staff, products, capacity (seats!) and cash. It is also an example of a generic

business-model template – every neighbourhood restaurant in the world conforms with this model, although

all parameters will of course be case-specific. A restaurant business is simply the sum of many such single-

unit models, plus structures to model central business functions.

• Many organisations face threats from competition. The model at sdl.re/BMpharma4a, simulates an intensely

competitive episode in a pharmaceuticals market. A new competitor product aims to steal the physicians

who currently take our established, market-leading product, so how to set pricing to fight them off while

protecting profitability as much as possible?

• The model at sdl.re/BMstaff6b forms the basis for a continuing functional plan – staff development. It

captures not only the changes to staff numbers as people are hired, promoted and leave, but also the

consequences for staff-experience and salary costs at each level.

• The model at sdl.re/BMITsupport4a concerns a service-quality crisis at a small IT-support company. The

model was used to figure out how to recover from a crisis that had built up over many months but can also

be used to help avoid such a crisis in the first place.

For more on the power of SD-based Living Business Models, see sdl.re/PowerOfModels and

sdl.re/LIPbusinessmodels.

Conclusions, and first steps for acquiring SD-modeling skills

This article has explained what SD modeling is and demonstrated some of its benefits. SD models can, of course,

be much more extensive and may be subjected to highly sophisticated exploration of scenarios and sensitivities.

How might such models contribute to SE practice?

• Project management simulations are already widely used to help plan and manage the acquisition of

physical systems, and the principles are readily transferable to planning and managing the creation of

new enterprises and the undertaking of any initiative for existing enterprises.

• In the Acquisition phase, simulation can confirm that any new enterprise or initiative is capable of

fulfilling its purpose, before real financial and human resources are committed to creating it.

• In the Utilization phase, when the new enterprise or activity is up and running, simulation can help ensure

that it does fulfil its purpose and continues to do so to a sustained high level of performance – just as the

control-panel in a power plant or chemical plant helps operators manage these physical systems.

• Modeling can also be used to fix problems that arise as the enterprise or initiative continues to progress.

Although modeling the most complex cases is a demanding challenge, needing much experience, any reasonably

numerate individual can acquire the basic skills in a short time. If you can build simple spreadsheet models, then

you can build simple SD models!

For the basic technical skill, see free online classes at sdl.re/modeling-getting-started/ - about 2.5

hours of video explanation and “follow-me” demonstrations.

Next, see the short guide to the AgileSD process for developing models with users or clients at

sdl.re/agileSD – the term “agile” reflecting the features of the process that deliver working,

http://sdl.re/BMrestaurant4e
http://sdl.re/BMpharma4a
http://sdl.re/BMstaff6b
http://sdl.re/BMITsupport4a
http://sdl.re/PowerOfModels
http://sdl.re/LIPbusinessmodels
https://strategydynamics.com/modeling-getting-started/
http://sdl.re/agileSD

Warren: System Dynamics - a Core Systems Engineering Capability

- 11 -

quantified simulations from the start, including continuous validation with real-world data, with the

full involvement of the users.

An outline of the most common structures that feature in business cases is in Strategy Dynamics

Essentials (Warren, 2016), see sdl.re/essentials.

Further instructional material is at sdl.re/courses, and more info at youtube.com/strategydynamics.

Comments on this article can be posted to the Strategy Dynamics Network at linkedin.com/groups/1688847.

Questions on the SD modeling method and our learning resources can be posted to our Forum sdl.re/forum.

References

Ford, A., 2011. System dynamics models of environment, energy and climate change. In Extreme Environmental

Events. Springer, New York, NY.

Forrester, J.W., 1968. Industrial dynamics—after the first decade. Management Science, 14(7), pp.398-415.

Lyneis, J.M. and Ford, D.N., 2007. System dynamics applied to project management: a survey, assessment, and

directions for future research. System Dynamics Review, 23, pp. 157-189.

Maidstone, R., 2012. Discrete event simulation, system dynamics and agent-based simulation: Discussion and

comparison. System, 1, pp. 1-6.

Mustafee, N., Powell, J., Brailsford, S.C., Diallo, S., Padilla, J. and Tolk, A., 2015, Hybrid simulation studies and

hybrid simulation systems: definitions, challenges, and benefits. In Winter Simulation Conference, 2015 (pp.1678-

1692). IEEE.

Sterman, J., 2000. Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill, New

York.

Vennix, J., 1996. Group Model Building. Wiley, NJ.

Warren, K., 2016. Strategy Dynamics Essentials. Strategy Dynamics Ltd.

http://sdl.re/essentials
http://sdl.re/courses
https://www.youtube.com/strategydynamics
https://www.linkedin.com/groups/1688847
http://sdl.re/forum

Warren: System Dynamics - a Core Systems Engineering Capability

- 12 -

Appendix 1: Dynamic Modeling -v- Process Modeling

The use of ‘models’ to support business strategy and management is a common idea, but the term “business

modeling” means many different things to different people.

Note first that we are not talking here about “business models” in the sense of a high-level explanation of what a

business chooses to do (what customers to serve, with what products and services), and how it makes money.

The frameworks used for those models mostly lead to descriptive diagrams rather than models that actually do

anything (see the short article on this topic at sdl.re/LIPBusinessModels).

Rather, we are talking about the many types of ‘model’ that executives and consultants may use to portray how a

business – or a part of it – functions and performs. Such models are used to aid management in designing or

managing the business or critical functions within it.

Process Modeling basics

Many people are familiar with process-mapping approaches to modeling the activities that together enable a

business to function. Indeed, process mapping is a very widespread professional discipline, of fundamental

importance in providing a platform for designing or redesigning business operations.

At its simplest, a process map or diagram lays out the sequential actions needed to accomplish a simple functional

task, such as this basic hiring process …

Similar process diagrams may be laid out for “customer journeys” (how customers are taken on, or how sales or

service activities happen), for supply-chains, for accounting processes and so on – that is, for all activities and

functions of a business.

Process mapping is recursive, so for example this hiring activity may appear as a single element in a wider view of

how an organisation’s staff-management operates. Taken to its full extent, process mapping can provide an

architecture for the whole enterprise – though of course this cannot be captured on a single picture, but requires

many, related diagrams. Such “enterprise architectures” are widely used to design IT systems and services (see

the Open Group explanation of EAs at opengroup.org/subjectareas/enterprise).

What exactly is process modeling doing? As the hiring example illustrates, process-modeling captures the

activities that act on the items that make up the enterprise, such as materials, machines, people, customers,

cash, and information. Most elements on a process diagram are therefore verbs (do A, then do B, then …).

Although process-mapping is a qualitative discipline, it can and should be rigorous, and amenable to validation – it

is easy, for example, to check that the steps in the hiring process above are in fact what happens to each job

application. Any real-world hiring activity may, of course, involve different or additional processes, such

interviewing.

Dynamic Modeling

Dynamic modeling is rather less well-known than process modeling, perhaps because it is often done by

specialists, and because historically it has mostly been used for technical functions of the business, such as the

http://sdl.re/LIPBusinessModels
http://www.opengroup.org/subjectareas/enterprise

Warren: System Dynamics - a Core Systems Engineering Capability

- 13 -

design of production facilities and supply-chains. Three main methods are used for dynamic modeling – discrete

event simulation, agent-based modeling and system dynamics – but the feature they share is that they all

quantify how numbers of items in a business or activity change over time, how fast they move between different

states, and how those changes and movements depend on other items in the system. For example, the number of

job applications screened each week depends on how many applications have been received, and on how many

HR staff are available to do the screening – all these numbers may, of course, change from week to week.

Repeating these calculations for successive weeks results in a working, quantified simulation of how the hiring

process performs. The following diagram, for example, is a system dynamics model of the same hiring process

above, but this model shows in the boxes (known as “stocks”) how the number of applications at each stage

change over 20 weeks. Those numbers change from week to week because applications “flow” from stage to

stage, and it is the rates at which applications flow through the green “pipes” that determine how the numbers in

each stock change from week to week.

You can explore this model and see how it performs under differing assumptions at sdl.re/HiringProcess.

What exactly is dynamic modeling doing? Quite different from process mapping, dynamic modeling focuses on

the items of an enterprise themselves, so most of its elements are nouns – customers, dollars, units, people,

products, and so on. (In this simple example, the items are the job-applicants). These models should also be

rigorous. First, the stocks and flow-rates at the heart of a dynamic model are fundamental factors observable in

the real world, and quantifiable. (See sdl.re/LIPstock for why these items are so important). In addition, the

behaviour of the model – all its elements, not just key results – should match observable behaviour of the real-

world system.

Such dynamic models are entirely different in nature from process models and offer different benefits. They show

how the system – whether just this local hiring policy or a whole enterprise – actually functions and performs,

quantitatively and over time. And that performance encompasses everything in the system, not just end-results –

the number of people hired in this case.

http://sdl.re/HiringProcess
http://sdl.re/LIPstock

